Foundations of Coin Mixing Services

PRESENTER: Noemi Glaeser

BACKGROUND

- Blockchains have a scalability problem (time per transaction & transactions per second).
- For scalability, two users can use a payment channel to pay each other off-chain. Many payment channels are usually connected via central hubs.
- A²L [S&P'21]: protocol for atomic and private payment hubs with formal security guarantees.

RESULTS

- A²L's security model flawed, as shown by 2 counterexamples:
 - 1. Key Recovery: Learn full decryption key → unlimited free money!
 - 2. One-more Signature: Steal 1 coin for every q successful payments
- New framework: **blind** conditional signatures (BCS) with precise security definitions, can be used to analyse payment hubs in *all* cryptocurrencies
- We give a fixed version of A²L called A²L+ which is provably secure and requires only minimal overhead

The coin mixing protocol A²L is not provably secure. We fixed it.

In A²L, the payer Alice sends a ciphertext to the hub and receives a decryption or abort based on the plaintext. This "decryption oracle" is unaccounted for in A²L's security proof.

 $\Pi_{BCS} := (Setup, PPromise, PSolve, Open)$

Game-based security for A²L⁺

- Blindness (vs. H): Hub can't link its session with Alice to its session with Bob
- Unlockability (vs. H): hard for Hub to complete a payment from Alice that doesn't result in a payment to Bob
- Unforgeability (vs. A+B): Alice and Bob can't get q+1 payments from Hub while only completing q payments

Exp (CL) Op (CL) Inv (CL) DLog (CL)

		0		1 \ / 1		\ /	()	0 (/
$\mathrm{A}^2\mathrm{L}$		S	chnorr	18		12	1	1	
(insecure)		ECDSA		18		12	1	1	
A^2L^+		Schnorr		28		20	2	2	
		E	CDSA	28	28		2	2	
A^2L vs. A^2L^+		Schnorr		+10		+8	+1	+1	
		E	CDSA	+10		+8	+1	+1	
Exp (G)	Op (G)		× mod	d q +	$\mod q$	#H	WAN (s)	LAN (s)	
13	8		4		9		2.292	0.580	
27	8		17		10		2.327	0.483	
14	9		5		9		~3.438	~0.87	
32	10		21		12		~3.491	~0.725	
+1	+1 +1		+1		+0	+0	+1.146	+0.290	
_					•		1	0.046	

dk' 1 0

Key Recovery

- Linearly hom.
- Circular sec. for bit encr.
- Bit encr. of dk
- A* opens a new session with hub for each bit (cryptocurrency layer has one-time

keys)

CFlip(i)

Oracle aborts iff encrypts 1

q+1 puzzles

Oracle aborts iff

ith bit is 1

One-More Sig

- Linearly hom. - Conditional bit flip
- Make q non-⊥
- queries → learn plaintext 1
- Solve system of eqns for remaining q plaintexts

