
Are Misuse-Resistant Cryptography Libraries Usable
and Secure?

Noemi Glaeser∗
nglaeser@umd.edu

University of Maryland
College Park, Maryland

Doruk Gür∗
dgur1@umd.edu

University of Maryland
College Park, Maryland

Michael Pearson∗
mpearso7@umd.edu

University of Maryland
College Park, Maryland

Abstract
We present a pilot study of miscreant, a nonce reuse-resistant
Python cryptography library. In a between-subjects study,
we analyze the functionality and security of code written
by participants and measure the usability of miscreant. We
compare the results to code written with PyCrypto, a popu-
lar Python cryptography library. With our results, we gain
greater insight into misuse-resistant cryptography libraries
and direction for a full-sized study and future work in usable
cryptography libraries.

1 Introduction
Cryptography is widely used in applications all over the
world. As TLS becomes the default for a lot of web traffic,
especially in phone apps, developers need to perform cryp-
tographic tasks such as encryption and certificate validation
[1]. To develop an application that uses encryption, they of-
ten use cryptography libraries that implement the underlying
cryptographic algorithms and provide (ideally easy-to-use)
cryptographic functions. However, prior research found that
cryptography libraries are often challenging to use, serving
as a roadblock to code that is both functional and secure [7].
One reason that developers write insecure code with cryp-
tography libraries is a lack of understanding of their inner
workings. This can lead to security flaws such as nonce reuse
or using nonrandom nonces [24].

We seek to understand if so-called “misuse-resistant” cryp-
tography libraries are effective tools for implementing cryp-
tography. Specifically, we want to answer the following ques-
tions: (1) Do they actually lead to more secure implementa-
tions than popular cryptography libraries? (2) Is usability
sacrificed in making the libraries misuse-resistant?
We believe these are fundamental questions that need to

be answered to promote secure code, because most insecu-
rities in cryptographic code arise from the way in which
a particular library is used. It is important to understand
how to encourage secure implementations of cryptographic
protocols when using external libraries. Misuse-resistant
cryptography libraries are beginning to emerge in response
to the pervasiveness of insecure cryptography implemented
with popular libraries, but to our knowledge, there has been
no empirical evaluation of software using these libraries nor
of their usability.
∗All authors contributed equally to this work.

To answer these questionswe conducted a between-subjects
online study comparing a misuse-resistant cryptography li-
brary, miscreant1, with a popular cryptography library, Py-
Crypto2. We evaluated code that participants wrote with
each library for functionality and security. In addition to eval-
uating the code, we measured the usability of each library
with the well-established System Usability Scale[11].

The rest of the paper is organized as follows: In Section 2
we review related works. We describe our methodology in
Section 3 and results in Section 4.We discuss the implications
of our results in Section 5 and conclude in Section 6.

2 Related Work
Despite the existence of provably secure cryptographic al-
gorithms, cryptography failures still occur. Egele et al. con-
ducted a survey of over 11,000 apps in the Android App store
[14] and found that 88% of them made at least one cryptogra-
phy mistake. Furthermore, Heninger et al. studied RSA and
DSA public keys and were able to recover a large number
of private keys due to shared public key factors [18]. These
common factors were attributed to insufficient system ran-
domness from the kernel. Springall et al. analyzed methods
for easily restarting TLS sessions and their implications for
forward secrecy [22]. They found that in the event of a com-
promise of private keys, forward secrecy would be broken in
most cases for at least several days and up to a few months.
They highlight the catastrophic effects that can occur from
cryptography failures.

Peter Gutmann discussed the possibility of developers mis-
using algorithms due to a lack of low-level cryptographic
understanding, citing common mistakes such as ECB mode
and improper initialization vectors [17]. To combat that he
suggests that we “Provide crypto functionality at the high-
est level possible in order to prevent users from injuring
themselves and others through misuse of low-level crypto
functions with properties they aren’t aware of” [17]. The
Miscreant cryptography library seeks to do just that [8]. It
provides resistance against nonce reuse, a common cryptog-
raphy pitfall.
Miscreant is one implementation of the idea of “misuse-

resistant authenticated encryption", first introduced by Rog-
away and Shrimpton [21]. Their definition ofmisuse-resistance

1https://github.com/miscreant/miscreant.py
2https://www.dlitz.net/software/pycrypto/

https://github.com/miscreant/miscreant.py
https://www.dlitz.net/software/pycrypto/

deals with initialization vector (IV) misuse. An insufficiently
random or repeated IV can compromise an authenticated
encryption (AE) scheme. Their proposed solution, the Syn-
thethic IV (SIV), aims to preserve authenticity and privacy
through minimal information leak even in the case of a badly
chosen IV. SIV variants of AEs are widely used (two of which,
AES-SIV and AES-PMAC-SIV, are part of miscreant library).

SIV, however, does not solve the nonce security prob-
lem. Bellare and Keelveedhi [10] discuss the impossibility of
achieving universal nonce security in any of the AE schemes
with key-dependent data and propose a transformation that
could be used. They devise an attack that can recover the
key of an AE scheme if the nonce is repeated or non-random,
but which is thwarted by the incorporation of a random
oracle. However, the proof of security is nontrivial, so this
transformation is not widely used in misuse-resistance.

Alternatively, specific modifications can be made on a per-
scheme basis to incorporate misuse-resistance. Gueron and
Lindell [16] modified the GCM scheme based on Rogaway
and Shrimpton’s work and created GCM-SIV, which is sig-
nificantly faster than original SIV-based AE. Compared to
other generic schemes in OpenSSL [23] GCM-SIV is slightly
slower for encryption and comparable for decryption. It is
faster than GCM for short encryptions. The scheme is in
the process of being standardized, but is not included in our
study as it is not present in a generic library for a non-expert
to test it.

Forler et al. [15] incorporated this paradigm into an exist-
ing API by creating AE and secure nonce generation func-
tions based on Ada’s cryptography library libadacrypt [6].
Their solution combines counter values and randomness for
nonce generation, giving resistance against nonce reuse, but
do not evaluate their tool’s usability. Although their solu-
tion is less error prone than other measures, the authors
themselves admit that design is counter-intuitive.

Thus, an opposite but complementary approach is to cre-
ate APIs that are easier to understand and use. These will
ideally guide end users, who are not cryptography experts,
around common pitfalls. In 2014, Das et al. [13] surveyed six
cryptographic libraries across five programming languages,
describing seven common issues3, how they are handled in
each library, and a best practice in each case. One of these
libraries is PyCrypto, which we use as the control in our
study. Unlike Das et al., we conduct a user study to assess
real programmers’ reactions to our selected libraries and
evaluate the security of real solutions implemented using
them.
Nadi et al. [20] take a step closer to the developers by as-

sessing the usability of the Java Cryptography API through
the analysis of StackOverflow posts, developer surveys, and

3IV reuse, method defaults, bloat caused by outdated/insecure methods,
omission of newest features, documentation, sample code, and primary
programming language.

inspection of code on GitHub. Though our study also in-
teracts with developers directly, unlike Nadi et al., we also
ask our participants to complete predefined tasks using the
libraries, which can then be compared for security across
developers and libraries. We also focus on Python instead
of Java, since Python is a more popular programming lan-
guage today (ranked 1𝑠𝑡 and 3𝑟𝑑 in the PYPL[3] and TIOBE[2]
indices, respectively).
The design of our study mirrors Acar et al.’s 2017 study

[7] on the usability of cryptographic APIs, but differs in the
APIs we evaluate: we ask our participants to use a misuse-
resistant library (miscreant), which is based on the paradigm
of misuse-resistant cryptography discussed above. We keep
most of the other elements of the study (tasks, SUS scale for
usability, etc.) the same to enable comparison of miscreant to
the other libraries discussed by Acar et al. and not used in this
study due to time and size limitations. This methodology has
been used in other studies as well, including Mindermann et
al.’s 2018 study of Rust cryptography APIs [19], which gives
us confidence in the design.

All previous works drew similar conclusions: API simplic-
ity is not enough for security; well-chosen examples can be
just as, if not more, effective than comprehensive documen-
tation; and developers hardly consider the security of their
implementations, but prioritize functionality. Our study aims
to understand how these principles could apply to the few
existing misuse-resistant libraries in the hopes of providing
some paradigm-specific guidance to augment their usability
and documentation as they develop.

3 Methods
3.1 Recruitment
We recruited participants with Python experience from the
University of Maryland (UMD) by posting an advertisement
on a Piazza page accessible to a large number of under-
graduate students. To ensure that participants had adequate
Python skills for the study, they first completed a prescreen
with a small Python task. Participants were not filtered based
on their prior cryptography knowledge.

3.2 Study Design
We designed an IRB-approved study that consisted of a pre-
screen and main study. Participants who successfully com-
pleted the prescreen were invited to participate in the main
study, which included two programming tasks and an exit
survey. The study poses limited ethical concerns, but our
methodology addresses privacy concerns by hosting the pre-
screen and main study on Qualtrics.

3.2.1 Prescreen. Interested participants received a screen-
ing test consisting of both a background survey and a pro-
gramming task. The background survey asked users for their
prior experience with Python (last time it was used, the na-
ture of the projects previously done) and programming in

general. Participants were then given 20 minutes to com-
plete a simple programming task designed to assess general
familiarity with Python and were allowed to access any doc-
uments they needed as they worked. Presenting a functional
solution that showed previous experience was enough to
qualify for the main study. The survey questions and pre-
screen programming task can be found in Appendices A and
D, respectively.

3.2.2 ProgrammingTasks. After qualifying, participants
were randomly separated into two groups (regular andmisuse-
resistant) and were presented with two tasks (secure key gen-
eration/storage and encryption) similar to the ones described
by Acar et al. [7]. Each task consisted of skeleton Python code
describing the functionality requirements and the cryptogra-
phy library to be used. Participants in the misuse-resistant
group were asked to use miscreant whereas participants in
the “regular” group used PyCrypto. They were given full doc-
umentation access to solve any possible problems relating to
the libraries. Participants’ solutions to the given tasks were
stored and later analyzed for both security and functionality.
The programming tasks can be found in Appendix D.

3.2.3 Exit Survey. After the programming section, par-
ticipants were asked to fill out an exit survey so we could
gather data on their experience using the libraries in ques-
tion. For each task, a set of questions prompted users for
their documentation usage, and their perceived security and
perceived functionality of their solutions on a 5-point Likert
scale followed by a set resembling Acar et al.’s [7] new usabil-
ity scale. After both tasks were complete, participants were
asked to rate the usability of their assigned library using the
well-established System Usability Scale (SUS)[11] and were
asked about their security background. The exact questions
can be found in Appendix A.

4 Results
4.1 Participants
We recruited seven participants to complete the prescreen
from our advertisement. Of the initial seven participants, six
completed the prescreen. We invited five of those partici-
pants to participate in the study, which four completed. (The
last participant started the assigned task but did not finish
at the end of data collection period.) Of the four participants
who completed the study, two were assigned PyCrypto (P1
and P2) and two were assigned miscreant (M1 and M2). Par-
ticipants who completed the study received a $20 Amazon
gift card for their time.

4.2 Functionality, Security, and Usability Scores
The security choices to be made when using each library are
shown in Table 1. Implementations were scored binarily on
functionality and security. Solutions received a “1” for func-
tionality according to the standard in [7]: if they ran “without

errors, passed the tests, and completed the assigned task”.
Unlike [7] and because of the paucity of data, we evaluated
the security of both functional and non-functional implemen-
tations. Security was broken into several parameters, each
scored “1” (if a secure choice was made) or “0” (otherwise).
We assigned “-” when the parameter was not applicable. For
example, P2 did not use a key derivation function (KDF), so
we could not score the KDF’s salt, pseudorandom function
(PRF), or iterations. Solutions are considered secure iff every
parameter received a score of “1”. By this standard, none
of the solutions for Task 1 (key generation and secure stor-
age) are secure and only two of the four solutions for Task 2
(encryption), namely P2’s and M1’s, are secure.

Three researchers independently scored each task and
assigned functionality and security scores for each security
parameter. They agreed with a Krippendorff’s Alpha of 0.841,
then met to resolve disagreements [4].

Neither library performed particularlywell.With PyCrypto,
half of the solutions to the key generation and storage task
were functional and none were secure: P1 did well but was
foiled when using the KDF, since they used a static salt and
PyCrypto’s insecure defaults for the PRF choice and itera-
tions. P2 faced issues in the same area, using SHA-256 instead
of a real KDF to obtain a hash of the password. Additionally,
they confused the randomly generated symmetric key with
the password-derived hash and stored the hash instead of the
key. In the encryption and decryption task, half the solutions
were functional again, but all were secure. Just as in the first
task, P1 used incorrect import statements which made the
code fail to run (we discuss this in more detail in Section
5.1). The median SUS score for PyCrypto was 46.25. Since
SUS scores below 68 are considered below average, this is
undesirable [5].
Miscreant had similar results for the key generation and

storage task. Half of the solutions were functional and half
of the solutions were secure. M1 was very close to a fully
secure solution, but used a static salt for the KDF. M2 grew
confused on several fronts and seemed to miss the purpose
of miscreant altogether; we discuss this further in Section
5.2. In the encryption and decryption task, both were func-
tional and half were secure, since M2 did not use a nonce.
Note, however, that this is exactly the mistake miscreant
was created to mitigate, and in theory this solution is still
secure. The median SUS score for miscreant was 50, which is
once again below average. Details about which choices were
regarded as secure or insecure can be found in Appendix C,
with breakdowns of the assigned codes for each participant
in Appendix D.

4.3 Regression Models
We also tried to build regression models based on our re-
stricted data. Our goal was to have a general idea on the
possible implications if we had sufficient data to process.
Hence, regression analysis was done as a demonstration

Table 1. Security choices required by our chosen libraries (based on Table III of [7]). means the user must make a secure
choice and # that no choice is required to obtain a secure solution.

KeyGen Key Storage Key Derivation Encryption

size random+ plain/enc size+ algo mode IV use+ salt PRF iterations algo mode IV

PyCrypto†
Miscreant # # # # #∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ # #
† Taken from Table III of [7].
+ Columns not included in Table III of [7].
∗ Miscreant implements AES-SIV, which is not a mode per se precludes use of other (potentially insecure) modes.
∗∗ Users must choose a nonce, but encryption is resistant to nonce misuse so even a poor choice should not impact security.
∗∗∗ Library does not include key derivation function, so users are expected to use hashlib.

of our approach and the resulting models should not be
considered meaningful. We used logistic regression for vari-
ables with binary outcomes such as functionality and linear
regression for the rest. Self-assessed functionality and self-
assessed security were considered as confidence scales and
thus treated as non-binary outcomes for regression analysis.
Final models for each category were chosen based on the
Akaike Information Criterion[12].
A majority of the models did not produce any statistically sig-
nificant results (defined here as factors with 𝑝-values lower
than 0.05). This was expected considering none of the logis-
tic regression models converged and both of them resulted
in models with high 𝑝-value factors. While not being statis-
tically significant or meaningful, a summary of final models
can be found in Appendix E.

5 Discussion
5.1 Limitations
Our study has several limitations. First, our sample size was
very small and not representative of the population that we
are studying since we only studied students at UMD. Mean-
ingful conclusions cannot be made about the functionality,
security, usability scores, and regression analyses run on the
data.
Second, we only compared two specific tasks using one

popular library with one misuse-resistant library. While our
tasks were concerned with symmetric encryption, crypto-
graphic algorithms include a a variety of additional opera-
tions, and hence our results do not generalize to cryptogra-
phy libraries in general.
Third, we did not make it clear to participants that they

could use additional libraries or otherwise modify the pro-
vided import statement for the library they were asked to use.
P1’s code wasn’t functional because the participant did not
realize the import statement could be modifed. They tried
to use legitimate functions from PyCrypto, but the code did
not run because it couldn’t properly find the functions. M1
noted in the response that they weren’t sure if they were

allowed to use hashlib for their KDF since miscreant did not
provide one.
Fourth, participants had to install the libraries on their

own machines, which could have affected their perception
of how usable the library was.

Finally, a social desirability bias could affect the usability
scores as participants might report the libraries easier to use
than they actually are, or otherwise over- or under-report
certain phenomena.

5.2 Takeaways
Miscreant is not the solution. In terms of both usability

and security, miscreant did not present an advantage over
PyCrypto based on participants’ solutions. This may be ex-
pected considering miscreant is not a fully featured library
with multiple functionalities but a specialized encryption
tool with only three functions: key generation, encryption,
and decryption. This made the first task rather difficult to
complete and even required turning to outside libraries. It is
also worth noting that while PyCrypto is continuously man-
aged, the developers of miscreant do not seem to be actively
working on the library. In fact, the ad hoc feel of miscreant
(whose entire documentation is hosted in a short section of a
GitHub readme file) may have contributed to the confusion
of at least one participant: failing to implement some of the
requirements of the first task, M2 imported PyCrypto and
finished the task in that library instead. M2 was lead to Py-
Crypto by an online tutorial for encrypting files in Python.
Lack of features expected from a standard cryptography li-
brary combined with drastic differences in documentation in
terms of style, size, and typing keeps miscreant from being
the next big solution to cryptography misuse.

Misuse-resistant libraries do not address the root prob-
lem. While miscreant is not the solution tomisuse in general,
the concept of misuse-resistant libraries seems to overlook
the more immediate problem in insecure decisions made by
users. The main feature of miscreant is to provide misuse
resistance to the written code, and yet it didn’t prevent M2

from not including a nonce to the solution. A majority of
users lack the proper background to fully understand re-
quirements and capabilities of the API at hand, which would
make misuse-resistant features of new libraries useless. To
prevent cryptography misuse, APIs that discourage users
from the inclusion of insecure options should be favored.

Catering to backwards compatibility leads to the in-
clusion of insecure choices and defaults. Due to legacy
reasons and compatibility issues, PyCrypto and many other
libraries still contain insecure algorithms, modes, and de-
fault values for parameters. Participant P1 failed to present
a secure KDF as part of the key generation due to use of an
insecure algorithm with an insecure default salt and insecure
number of iterations included within PyCrypto. As long as
these deprecated measures remain available in cryptographic
APIs, it will be possible to unintentionally use these tools to
produce weak solutions.

5.3 Future Work
Improve cryptography APIs. To continue improving us-

ability of cryptography APIs for more secure solutions, the
APIs themselves have to be changed to reduce user mistakes.
Our work showed the source of misuse often comes from the
perception and background of users. Therefore, to prevent
future mistakes, removing choice when users don’t have the
necessary information to make a secure one would improve
APIs and the security of solutions written with them.

Sanitizing defaults. Removing unnecessary choices from
users only will not suffice as the remaining choices also have
to be sanitized to accommodate more secure algorithms and
defaults. Many cryptographic libraries still include depre-
cated algorithms (e.g. DES) or insecure default parameters
(like non-random salts) which leaves the user with a chance
of using these insecure approaches. APIs should remove
these options to accommodate new, useful paradigms like
misuse resistance. A tool like miscreant could be more useful
if incorporated into a mainstream library like PyCrypto.

Improving documentation. Good APIs themselves will
not be enough to provide fully secure solutions. To help users,
the complementary material should also be updated in terms
of clarity and usability. Users should be assumed to have no
prior knowledge on the subject matter; details and possible
mistakes should be outlined in detail. API documentation
should also point users to proper places for features that are
not included within the API in order to prevent errors caused
by a lack of features considered “out of scope” by the API.
This could have prevented KDF usage errors in miscreant.

6 Conclusion
Cryptography is commonly used in a variety of applications,
bringing with it the potential for a myriad of errors and se-
curity weaknesses. Misuse-resistant libraries are one of the

proposed solutions for reducing the number of developer-
introduced errors. In this pilot study, we set out to find
whether this new generation of libraries is more usable and
yields more secure solutions than the traditional counter-
parts by comparing two libraries: miscreant and PyCrypto.
Since this was only a pilot study, a full-scale study needs to be
done to obtain more meaningful data. However, the results
of our pilot study suggest misuse-resistant libraries might
not present an advantage in terms of usability and security,
as the main factors affecting secure, functional solutions
lie with the users. For this reason, we instead recommend
improving existing libraries both in terms of features and
supplementary material to prevent misuse-based problems.

Acknowledgments
We would like to thank Michelle Mazurek and Omer Akgul
for their guidance during the semester and plentiful and
helpful feedback throughout the course of this project. We
are also grateful to our anonymous classmates for their in-
sightful comments and questions during the process. Finally,
we thank Ming Lin and the Computer Science Department at
UMD for providing the funding necessary to complete this
research.

References
[1] [n.d.]. 80% of all Android apps are encrypting traffic by de-

fault. https://www.zdnet.com/article/80-of-all-android-apps-are-
encrypting-traffic-by-default/

[2] [n.d.]. Latest news. https://www.tiobe.com/tiobe-index/
[3] [n.d.]. PYPL PopularitY of Programming Language index. http:

//pypl.github.io/PYPL.html
[4] [n.d.]. ReCal for Ordinal, Interval, and Ratio Data (OIR). http:

//dfreelon.org/utils/recalfront/recal-oir/
[5] [n.d.]. System Usability Scale (SUS). ([n. d.]). https://www.usability.

gov/how-to-and-tools/methods/system-usability-scale.html
[6] 2011. Ada-Crypto-Library. (2011). https://github.com/cforler/Ada-

Crypto-Library.
[7] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon

Kim, Michelle L Mazurek, and Christian Stransky. 2017. Comparing
the usability of cryptographic apis. In 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 154–171.

[8] Tony Arcieri. 2017. Introducing Miscreant A misuse-resistant encryp-
tion library, available for the following languages:. (2017). miscreant.io.

[9] Elaine Barker and Allen Roginsky. 2019. NIST Special Publication 800-
131A Revision 2: Transitioning the Use of Cryptographic Algorithms
and Key Lengths. https://csrc.nist.gov/publications/detail/sp/800-
131a/rev-2/final

[10] Mihir Bellare and Sriram Keelveedhi. 2011. Authenticated and misuse-
resistant encryption of key-dependent data. In Annual Cryptology
Conference. Springer, 610–629.

[11] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability
evaluation in industry 189, 194 (1996), 4–7.

[12] Kenneth P Burnham and David R Anderson. 2004. Multimodel in-
ference: understanding AIC and BIC in model selection. Sociological
methods & research 33, 2 (2004), 261–304.

[13] Somak Das, Vineet Gopal, Kevin King, and Amruth Venkatraman.
[n.d.]. Cryptographic Misuse of Libraries. ([n. d.]). https://pdfs.
semanticscholar.org/03ca/653e5ac26bd5575f7ef578aa3c2c7b964313.
pdf

https://www.zdnet.com/article/80-of-all-android-apps-are-encrypting-traffic-by-default/
https://www.zdnet.com/article/80-of-all-android-apps-are-encrypting-traffic-by-default/
https://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://dfreelon.org/utils/recalfront/recal-oir/
http://dfreelon.org/utils/recalfront/recal-oir/
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://github.com/cforler/Ada-Crypto-Library
https://github.com/cforler/Ada-Crypto-Library
miscreant.io
https://csrc.nist.gov/publications/detail/sp/800-131a/rev-2/final
https://csrc.nist.gov/publications/detail/sp/800-131a/rev-2/final
https://pdfs.semanticscholar.org/03ca/653e5ac26bd5575f7ef578aa3c2c7b964313.pdf
https://pdfs.semanticscholar.org/03ca/653e5ac26bd5575f7ef578aa3c2c7b964313.pdf
https://pdfs.semanticscholar.org/03ca/653e5ac26bd5575f7ef578aa3c2c7b964313.pdf

[14] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. 2013. An Empirical Study of CryptographicMisuse in Android
Applications. In 20th ACM Conference on Computer and Communica-
tions Security. ACM, 73–84.

[15] Christian Forler, Stefan Lucks, and Jakob Wenzel. 2012. Designing
the API for a cryptographic library: A misuse-resistant application
programming interface, Vol. 7308. 75–88. https://doi.org/10.1007/978-
3-642-30598-6_6

[16] Shay Gueron and Yehuda Lindell. 2015. GCM-SIV: full nonce misuse-
resistant authenticated encryption at under one cycle per byte. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. 109–119.

[17] Peter Gutmann. 2002. Lessons Learned in Implementing andDeploying
Crypto Software. In 11th USENIX Security Symposium. 315–325.

[18] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halder-
man. 2012. Mining Your Ps and Qs: Detection of Widespread Weak
Keys in Network Devices. In 21st USENIX Security Symposium. IEEE.

[19] Kai Mindermann, Philipp Keck, and Stefan Wagner. 2018. How Usable
are Rust Cryptography APIs? 2018 IEEE International Conference on
Software Quality, Reliability and Security (QRS) (July 2018), 143–154.
https://doi.org/10.1109/QRS.2018.00028 arXiv: 1806.04929.

[20] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jump-
ing through hoops: why do Java developers struggle with cryptog-
raphy APIs?. In Proceedings of the 38th International Conference on
Software Engineering - ICSE ’16. ACM Press, Austin, Texas, 935–946.
https://doi.org/10.1145/2884781.2884790

[21] Phillip Rogaway and Thomas Shrimpton. 2006. A provable-security
treatment of the key-wrap problem. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer,
373–390.

[22] Drew Springall, Zakir Durumeric, and J. Alex Halderman. 2016. Mea-
suring the Security Harm of TLS Crypto Shortcuts. In 2016 Internet
Measurement Conference. 33–47.

[23] The OpenSSL Project. 2003. OpenSSL: The Open Source toolkit for
SSL/TLS. (2003). www.openssl.org.

[24] Daniel Votipka, Kelsey R. Fulton, James Parker, Matthew Hou,
Michelle L. Mazurek, and Michael Hicks. 2020. Understanding se-
curity mistakes developers make: Qualitative analysis from Build It,
Break It, Fix It. In 29th Usenix Security Symposium.

A Survey Text
A.1 Prescreen

• How long have you been programming? (<1 year; 1-2
years; 2-5 years; >5 years)

• When was the last time you programmed in Python?
(In the last week; 1 week to <1 month ago; 1 month
to <6 months ago; 6 months to <1 year ago; ≥ 1 years
ago)

• To what extent do you use Python? (Check all that ap-
ply) (I have used Python for class; I have used Python
outside of class for personal projects; I have used Python
on a project or application for payment; I have used
Python in a project or application published on GitHub
or a similar platform and available for public use)

A.2 Exit Survey
The following shows the questions used in the exit survey.
Besides the first two task-based ones, each of the questions

asked participants for their agreement with the given state-
ment on a 5-point Likert scale. Attention checks are omitted.

Task-Based Questions. Briefly describe what you have
been asked to do in this task.
What kind of documentation (if any) did you use to accom-
plish the first task? (Official API Documentation; StackOver-
flow or other similar platforms; Google or other similar
search engines; Other (Please explain); I didn’t use any kind
of documentation.)
Now think about your development process and solution.
Please rate your agreement/disagreement for the following
accordingly.

• I think my solution satisfies the required functionality.
• I believe my solution is secure and can probably with-
stand the majority of the most common attacks.

• I had to go through and use a significant portion of
the given API to accomplish this task.

• I believe I can reuse my written code with minor ad-
justments if I have to accomplish a similar task.

• Security and development concepts required for this
task were previously known to me.

• I could easily grasp required security and development
concepts after partially reading the documentation I
used for the given API.

• The documentation I used had useful examples and
explanations for functionality.

• The naming of classes and functions in the API were
intuitive and straightforward.

• If I encountered an exception or an error, the descrip-
tive text was easy to understand.

• It was easy to fix my errors based on encountered error
or exception messages.

• It was easy to accomplish the assigned task with the
given API.

System Usability Scale (SUS). Now based on your pre-
vious answers, please rate your agreement/disagreement
on following statements about the general usability of the
assigned library.

• I think that I would like to use this API frequently.
• I found the API unnecessarily complex.
• I thought the API was easy to use.
• I think that I would need the support of a technical
person to be able to use this API.

• I found the various functions in this API were well
integrated.

• I thought there was too much inconsistency in this
API.

• I would imagine that most people would learn to use
this system very quickly.

• I found the API very cumbersome to use.
• I felt very confident using the API.

https://doi.org/10.1007/978-3-642-30598-6_6
https://doi.org/10.1007/978-3-642-30598-6_6
https://doi.org/10.1109/QRS.2018.00028
https://doi.org/10.1145/2884781.2884790
www.openssl.org

• I needed to learn a lot of things before I could get going
with this API.

Security Background.

• Do you have a background in security, cryptography
or a similar subject? (Yes; No)

• Please tell us how long you were working on that
subject. (This question only appears if the previous
question is answered “Yes”)(<1 year; 1-2 years; 2-5
years; >5 years)

B Programming Tasks
B.1 Prescreen
You will have 20 minutes to complete the following task. You
are free to use any resources (books, search engine, docu-
mentation, etc.) to help you.

Write a program that populates a list of user-provided size
(at most 100) with random numbers between 1 and 100 (in-
clusive). Calculate the average over the elements in the list
and write this number to a file named “averages.txt”. If a
user runs the program again, append the new average to the
same file.

Running the program for a random list of size 10 would
look something like this: python averages.py 10

After three runs of the program, “averages.txt” might look
something like this:
47.6
32.5
55.1

B.2 Task 1 (Key Generation and Storage)
PyCrypto Text. Goal: Use the PyCrypto library to create

a secure symmetric key and safely store it in a file named
“my_key” that is protectedwith the password “my_password”.
You may write any helper functions that you need.
Documentation: https://www.dlitz.net/software/pycrypto/
api/current/

Please download the skeleton Python file and fill it in.

PyCrypto Skeleton Code. The given skeleton code is as
follows:

1 # Key Generation and Storage

2 # Goal: Use PyCrypto to create a secure symmetric

key and safely store it in a file named "

my_key" that is

3 # protected with the password "my_password ". You

may write any helper functions that you need.

4

5 # Documentation: https ://www.dlitz.net/software/

pycrypto/api/current/

6

7 import Crypto

8

9 def keygen ():

10 '''

11 Purpose:

12 Create a symmetric key and store it in a file.

13

14 Arguments:

15 N/A

16

17 Return value:

18 N/A

19

20 Notes:

21 - If you used additional resources besides

the official documentation

22 (e.g. search engine , StackOverflow),

please paste the links here:

23 '''

24

25 # This is where your code goes

26

27 # This will test the code for this task

28 keygen ()

29 print("Task completed! Please continue.")

Miscreant Text. Goal: Use the Miscreant library to create
a secure symmetric key and safely store it in a file named
"my_key" that is protectedwith the password "my_password".
You may write any helper functions that you need.
Documentation: https://github.com/miscreant/miscreant.py#
api

Please download the skeleton Python file here and fill it
in:

Miscreant Skeleton Code. The given skeleton code is as
follows:

1 # Key Generation and Storage

2 # Goal: Use miscreant to create a secure symmetric

key and safely store it in a file named "

my_key"

3 # that is protected with the password "my_password

". You may write any helper functions that you

need.

4

5 # Documentation: https :// github.com/miscreant/

miscreant.py#api

6

7 import miscreant

8

9 def keygen ():

10 '''

11 Purpose:

12 Create a symmetric key and store it in a file.

https://www.dlitz.net/software/pycrypto
https://www.dlitz.net/software/pycrypto/api/current/
https://www.dlitz.net/software/pycrypto/api/current/
https://github.com/miscreant/miscreant.py#requirements
https://github.com/miscreant/miscreant.py#api
https://github.com/miscreant/miscreant.py#api

13

14 Arguments:

15 N/A

16

17 Return value:

18 N/A

19

20 Notes:

21 - If you used additional resources besides

the official documentation (e.g. search

engine , StackOverflow), please paste the links

here:

22 '''

23

24 # This is where your code goes

25

26 # This will test the code for this task

27 keygen ()

28 print("Task completed! Please continue.")

B.3 Task 2 (Encryption)
PyCrypto Text. Goal: Use the PyCrypto library to encrypt

and then decrypt the files “message.txt”, “message1.txt”, and
“message2.txt” using the symmetric key from the previous
task. You may write any helper functions that you need.
Documentation: https://www.dlitz.net/software/pycrypto/
api/current/

Please download the skeleton Python file and fill it in:

PyCrypto Skeleton Code. The given skeleton code is as
follows:

1 # Encryption and Decryption

2 # Goal: Use PyCrypto to encrypt and then decrypt

the files "message.txt", "message1.txt", and "

message2.txt"

3 # using the symmetric key from the previous task.

You may write any helper functions that you

need.

4

5 # Documentation: https ://www.dlitz.net/software/

pycrypto/api/current/

6

7 import Crypto

8

9 def encrypt(filename):

10 '''

11 Purpose:

12 Use your symmetric key to encrypt a file.

Output the encrypted text to a new file called

"[filename]_enc.txt".

13

14 Arguments:

15 filename: The name of the file to encrypt.

16

17 Return value:

18 N/A

19

20 Notes:

21 - The files to encrypt can be found at ./

message.txt , ./ message1.txt , and ./ message2.

txt

22 - If you used additional resources besides

the official documentation (e.g. search

engine , StackOverflow), please paste the links

here:

23 '''

24

25 # This is where your code goes

26

27 def decrypt(filename):

28 '''

29 Purpose:

30 Use your symmetric key to decrypt a file.

Output the encrypted text to a new file called

"[filename]_dec.txt".

31

32 Arguments:

33 filename: The name of the file to decrypt.

34

35 Return value:

36 N/A

37

38 Notes:

39 - Decrypt the files you encrypted , which

should be found at ./ message_enc.txt , ./

message1_enc.txt , and ./ message2_enc.txt

40 - If you used additional resources besides the

official API (e.g. search engine ,

StackOverflow), please paste the links here:

41 '''

42

43 # This is where your code goes

44

45

46

47 # This will test the code for this task

48 def compare_files(file1 , file2):

49 with open(file1 , "r") as f1:

50 with open(file2 , "r") as f2:

51 return f1.read() == f2.read()

52

53 encrypt("message.txt")

54 decrypt("message_enc.txt")

55 assert compare_files("message.txt", "message_dec.

txt"), "message did not decrypt correctly"

56

57 encrypt("message1.txt")

58 decrypt("message1_enc.txt")

59 assert compare_files("message1.txt", "message1_dec

.txt"), "message1 did not decrypt correctly"

60

61 encrypt("message2.txt")

62 decrypt("message2_enc.txt")

https://www.dlitz.net/software/pycrypto
https://www.dlitz.net/software/pycrypto/api/current/
https://www.dlitz.net/software/pycrypto/api/current/

63 assert compare_files("message2.txt", "message2_dec

.txt"), "message2 did not decrypt correctly"

64

65 print("Task completed! Please continue.")

Miscreant Text. Goal: Use the Miscreant library to en-
crypt and then decrypt the files "message.txt", "message1.txt",
and "message2.txt" using the symmetric key from the pre-
vious task. Youmaywrite any helper functions that you need.
Documentation: https://github.com/miscreant/miscreant.py#
api

Please download the skeleton Python file here and fill it
in:

Miscreant Skeleton Code. The given skeleton code is as
follows:

1 # Encryption and Decryption

2 # Goal: Use miscreant to encrypt and then decrypt

the files "message.txt", "message1.txt", and "

message2.txt"

3 # using the symmetric key from the previous task.

You may write any helper functions that you

need.

4

5 # Documentation: https :// github.com/miscreant/

miscreant.py#api

6

7 import miscreant

8

9 def encrypt(filename):

10 '''

11 Purpose:

12 Use your symmetric key to encrypt a file.

Output the encrypted text to a new file called

"[filename]_enc.txt".

13

14 Arguments:

15 filename: The name of the file to encrypt.

16

17 Return value:

18 N/A

19

20 Notes:

21 - The files to encrypt can be found at ./

message.txt , ./ message1.txt , and ./ message2.

txt

22 - If you used additional resources besides

the official documentation (e.g. search

engine , StackOverflow), please paste the links

here:

23 '''

24

25 # This is where your code goes

26

27 def decrypt(filename):

28 '''

29 Purpose:

30 Use your symmetric key to decrypt a file.

Output the encrypted text to a new file called

"[filename]_dec.txt".

31

32 Arguments:

33 filename: The name of the file to decrypt.

34

35 Return value:

36 N/A

37

38 Notes:

39 - Decrypt the files you encrypted , which

should be found at ./ message_enc.txt , ./

message1_enc.txt , and ./ message2_enc.txt

40 - If you used additional resources besides the

official API (e.g. search engine ,

StackOverflow), please paste the links here:

41 '''

42

43 # This is where your code goes

44

45

46

47 # This will test the code for this task

48 def compare_files(file1 , file2):

49 with open(file1 , "r") as f1:

50 with open(file2 , "r") as f2:

51 return f1.read() == f2.read()

52

53 encrypt("message.txt")

54 decrypt("message_enc.txt")

55 assert compare_files("message.txt", "message_dec.

txt"), "message did not decrypt correctly"

56

57 encrypt("message1.txt")

58 decrypt("message1_enc.txt")

59 assert compare_files("message1.txt", "message1_dec

.txt"), "message1 did not decrypt correctly"

60

61 encrypt("message2.txt")

62 decrypt("message2_enc.txt")

63 assert compare_files("message2.txt", "message2_dec

.txt"), "message2 did not decrypt correctly"

64

65 print("Task completed! Please continue.")

C Codebook for Implementations
Unless otherwise marked, these choices are taken from [7].

KeyGen:
• Size: Generated key is a secure size (≥ 128 bits [9])
• Random: Key is generated using a good source of ran-
domness (os.urandom() or other secure sources of
randomness)

https://github.com/miscreant/miscreant.py#requirements
https://github.com/miscreant/miscreant.py#api
https://github.com/miscreant/miscreant.py#api

Key Storage:

• Plain/Enc: Key is stored encrypted
• Size: Key is encrypted with a key of a good size (same
as above)

• Algo: A secure algorithm is used to encrypt the key
(AES)

• Mode: A secure mode of AES is used to encrypt the
key (CBC, CTR, CFB)

• IV: A secure IV is used to encrypt the key (not static,
empty, or zero)

Key Derivation:

• Used: A secure KDF (e.g. PBKDF2) is used to derive a
strong key from the password

• Salt: A secure salt is used for the KDF (not static, empty,
or zero)

• PRF: A secure PRF is used for the KDF (nothing less
than HMAC-SHA1)

• Iterations: Enough iterations of the KDF are performed
(at least 10,000)

Encryption:

• Algo: A secure algorithm is used to encrypt the key
(AES)

• Mode: A secure mode of AES is used (CBC, CTR, CFB)
• IV: A secure IV is used (not static, empty, or zero)

D Functionality and Security Codes
Tables 2 and 3 summarize the functionality and security of
the implementations.

E Regression Results
Tables 4, 5, 6, 7, and 8 summarize final models, detailing the
resulting factors with their odds ratios or coefficients, confi-
dence intervals, and 𝑝-values. Higher odds ratios and higher
coefficient absolute values indicate higher effect on themodel
and 𝑝-values lower than 0.05 show statistical significance.
While these results are not meaningful or statistically sig-
nificant due to sample size, it can be seen that the resulting
models favor factors other than library choice.

Factor O.R. C.I. 𝑝-value
Task: Key storage 0.400 [-4.028, 2.194] 0.564
Library: PyCrypto 0.856 [-3.820, 3.509] 0.934
Security background 1.833 [-3.956, 5.169] 0.795
Table 4. Final model for functionality of the solutions.

Factor O.R. C.I. 𝑝-value
Task: Key storage 0.730 [-3.538, 2.907] 0.848
Library: PyCrypto 1.160 [-3.277, 3.574] 0.932
Document: Other 1.247 [-6.240, 6.682] 0.947
Security background 1.052 [-5.091, 5.192] 0.985

Table 5. Final model for security of the solutions.

Factor Coeff. C.I. 𝑝-value
Task: Key Storage -2.143 [-5.154, 0.868] 0.092
Library: PyCrypto -1.57 [-6.930, 3.787] 0.334
Document: StackOverflow -2.429 [-9.491, 4.633] 0.277
Document: Search Engine 3.429 [-0.830, 7.687] 0.074
Document: Other -1.143 [-6.641, 4.355] 0.465
Security Background 2.571 [-1.687, 6.830] 0.122

Table 6. Final model for participants’ self-assessed function-
ality of their results with 𝑅2 = 0.929.

Factor Coeff. C.I. 𝑝-value
Task: Key storage -0.750 [-1.901, 0.401] 0.145
Library: PyCrypto -1.125 [-3.034, 0.784] 0.177
Document: StackOverflow -2.125 [-4.762, 0.512] 0.089
Security background 3.500 [1.872, 5.128] 0.004∗

Table 7. Final model for participants’ self-assessed func-
tionality of their results with 𝑅2 = 0.913. The ∗ denotes
statistically significant result.

Factor Coeff. C.I. 𝑝-value
Library: PyCrypto 5.833 [-5.677, 17.344] 0.232
Document: StackOverflow -11.667 [-34.688, 11.354] 0.232
Document: Google 15.000 [-14.449, 44.449] 0.230
Security background 35.000 [9.497, 60.503] 0.019∗

Table 8. Final model for participants’ self-assessed func-
tionality of their results with 𝑅2 = 0.808. The ∗ denotes
statistically significant result.

Participant Functionality KeyGen Key Storage Key Derivation

Size Random Plain/Enc Size Algo Mode IV Used Salt PRF Iterations
P1 0 1 1 1 1 1 1 1 1 0 0 0
P2 1 1 0 1 1 1 1 1 0 - - -

M1 1 1∗ 1∗ 1 1∗ 1∗ 1∗ 1 1 0 1 1
M2 0 1∗ 1∗ 0 - - - - 0 - - -
∗ no choice was required to obtain a secure solution

Table 2. Functionality and security of participant solutions for Task 1 (key generation and storage).

Participant Functionality Encryption

Algo Mode IV

P1 0 1 1 1
P2 1 1 1 1

M1 1 1∗ 1∗ 1
M2 1 1∗ 1∗ 0
∗ no choice was required to obtain a secure solution

Table 3. Functionality and security of participant solutions for Task 2 (encryption).

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Recruitment
	3.2 Study Design

	4 Results
	4.1 Participants
	4.2 Functionality, Security, and Usability Scores
	4.3 Regression Models

	5 Discussion
	5.1 Limitations
	5.2 Takeaways
	5.3 Future Work

	6 Conclusion
	Acknowledgments
	References
	A Survey Text
	A.1 Prescreen
	A.2 Exit Survey

	B Programming Tasks
	B.1 Prescreen
	B.2 Task 1 (Key Generation and Storage)
	B.3 Task 2 (Encryption)

	C Codebook for Implementations
	D Functionality and Security Codes
	E Regression Results

